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ABSTRACT

In a seminal article on population pharmacokinetic model-
ing, researchers demonstrated how means and variances of
pharmacokinetic parameters for a patient population could
be inferred from sparse data collected under conditions of
routine patient care. But they also identified 4 potential
concerns about their methodology: unobserved con-
founding variables may bias the inferences; conditions
under which data are collected may lead to inaccuracies of
reporting or recording; correlations among important pre-
dictor variables may reduce statistical efficiency; and costs
cannot be controlled by principles of study design. Experi-
ences are reviewed that relate to these potential disadvan-
tages. A method is presented for diagnosing the possible
presence of confounding. A model is constructed and
applied that captures the influences of data inaccuracies.
An example of selecting from among correlated covariates
is summarized. Finally, a methodology for optimal study
design is reviewed and applied to an example.

KEYWORDS: optimal design, variable selection, noncom-
pliance, errors in variables, confounding

INTRODUCTION

In the 1970s, Sheiner et al'~ laid the foundations of popu-
lation pharmacokinetic (PK) modeling. They showed how,
with data collected as part of routine patient care, such
modeling can estimate the average values of PK parame-
ters and the interindividual variances of those parameters
in a patient population. With such sparsely sampled data
from patients on digoxin, their methodology produced esti-
mates that were similar to published values derived with
traditional methods.

About their new methodology, Sheiner et al' wrote: “Its
greatest asset is the ability to exploit possibly fragmentary
and unstructured data from each individual. ... Routine
patient data can be analyzed ... Thus values of pharmaco-
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kinetic parameters can be assessed in the population in
which drugs are to be used.”

But they also recognized potential limitations of their new
approach, writing that'

... the disadvantages of the use of routine data are not
insignificant. They are, first, the possibility of bias due to
the effects of unknown concomitant variables that are corre-
lated with included variables; second the problem of reli-
ability of the data; third, the problem of statistical ineffi-
ciency, due to correlation of the variables; and, fourth, a
methodological problem in that the data cannot be deliber-
ately constructed so as to minimize the costs of the analysis.

The objective here is to consider selected aspects of the
above4 “disadvantages.” Thisisnotacomprehensivereview,
but rather a sampling of some recent research and some
examples. The 4 concerns will be taken in reverse order.

Deliberately Constructing the Data

The population PK methodology of Sheiner et al' has
found perhaps its most popular application in clinical trials
that are part of drug development. Although in routine
patient care the data might be constrained to the configura-
tion in which it is found, clinical trials at least sometimes
offer the possibility of prespecifying that configuration.
Rather than focusing on the minimization of costs through
such prespecification, as Sheiner et al' couched their con-
cern, consider the inverse problem of maximizing precision
at a given cost, that is, for a given number of patients and
samples.’

Figure 1 displays some real but disguised data collected
from a clinical trial where the treatment phase lasted sev-
eral months, and a single blood sample was collected from
each patient at each of up to 3 clinic visits. For 148
patients, there were 373 observations, an average of 2.5
samples per patient. In the figure, lines connect data from
the same individual.

Doses were administered orally twice a day at approximate
12-hour intervals. Already by the time of the first sample
for each patient, a sufficient number of doses had been
administered that PK steady state should have been reach-
ed. A 1-compartment model with first-order absorption and
elimination described the data adequately. Figure 2 shows
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Population pharmacokinetic data
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Figure 1. Population pharmacokinetic data.

the rise to steady state for such a model dosed regularly at
12-hour intervals.

The steady-state form of the model, available in NON-
MEM,* was fitted to the data in Figure 1. The model was
parameterized in terms of the absorption rate constant, k,,
the apparent clearance, Cl, and the apparent volume, V.
The resulting parameter estimates (and estimated SEs), as
obtained from NONMEM, were 0.74 (0.26), 2.85 (0.09),
and 87.6 (20.4), for k,, Cl, and V, respectively.

The data represented in Figure 1 was collected without
controlling the times at which the samples were taken.
Patients took their morning doses then visited the clinic at
their convenience, at which time blood samples were
taken. This lack of control translated into large imprecision
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Figure 2. Rise to steady state.
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Figure 3. Observed density of sample times and optimal times.

in the estimates of k, and V, at least relative to the preci-
sion of the estimate of Cl.

If it were possible to specify the time postdose for each
sample by directing when the patient should visit the
clinic, the estimates of k, and V could have been improved.
A methodology for choosing the sampling times has
recently been made generally available.”™® The methodol-
ogy is based on approximating and maximizing the deter-
minant of the Fisher Information Matrix.> The user must
supply a model and provisional estimates for the unknown
parameters.

Figure 3 shows the density of observed sampling times
and, superimposed on it, the optimal sample times as deter-
mined by the methodology. The 1-compartment model and
parameter estimates from the fit to the data of Figure 1
were supplied as inputs. The optimal times were deter-
mined subject to the constraints that there be 3 samples per
subject and that they be <12 hours postdose.

The methodology also provides the expected SEs of
the parameter estimates that would be obtained using the
optimized sampling times. Table 1 reports those values.
Because the optimization uses an approximation to the
Fisher Information Matrix, and NONMEM itself uses an
approximation to the log-likelihood, a simulation experi-
ment was run to validate those values. SEs were estimated
as SDs of parameter estimates obtained from a sample
of 100 simulated data sets. Each data set had the same
number of patients and observations as the original, but
the sample times were the optimal times identified by the
methodology.

Also reported in Table 1 are bootstrap estimates of SEs for
the parameter estimates based on the original data. The
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Table 1. SEs
Estimated Via Estimated From 83 Theoretical Estimated From 100
Fit to Original Bootstrap Samples of Optimum From Simulations Using
Variable Data Original Data* PFIM_OPT Optimal Times
Ok, 0.26 0.58 0.10 0.13
ocl 0.09 0.10 0.08 0.10
v 20.4 27.3 8.80 10.5

*100 bootstrap samples were generated. SDs are reported based on the 83 samples where NONMEM reported “MINIMIZATION SUCCESSFUL.”

results of the bootstrap experiment suggest that the esti-
mate by NONMEM of the SE for k, was low, but the
bootstrap and NONMEM estimates of SEs for Cl and V
were similar. The SDs from the simulation experiment
were quite close to the predicted SEs from the methodol-
ogy. For k, and V, the SEs were reduced substantially with
the optimal times relative to the original data.

These results suggest that for a given cost, that is, a given
number of patients and observations, precision can be
increased by judiciously selecting and prespecifying the
times at which samples are collected. However, this con-
clusion needs some qualification. Open questions remain
about robustness of the optimality to inaccuracies in the
model and provisional parameter estimates that comprise
inputs to the algorithm. Also, in a real clinical trial, sam-
pling times may not readily be controlled precisely to those
prespecified. To allow more flexibility, Green and Duffull’
constructed a design that specified, instead of sampling
time points, time windows of which the widths were
chosen to allow a loss of statistical efficiency of only 10%.
They applied this optimal design in a real clinical trial in
parallel with an “empirical,” more uniform, distribution of
sampling times. Adherence to the prespecified sampling
time windows was less than perfect. The optimal-design
arm did not outperform the empirical arm on several
assessment measures, but it did support identification of a
more complex structural model that fit the data better in
terms of reduced residual variance.

Correlation of Variables

Correlation of predictor variables, a condition called
collinearity in the multiple-regression context, causes
imprecise estimation of parameters associated with the
predictors.'® SEs of the parameter estimates are corre-
spondingly large. Such statistical inefficiency of estimation
seems to have been the third of the 4 concerns raised by
Sheiner et al,' as quoted above. But here, the related issue
of choosing among correlated predictor variables will
be considered. When prior knowledge does not specify
what predictor variables belong in a model, and variable-
selection methods are used to identify important predictors,
collinearity affects the probability of including authentic
predictors.'”

In the population-model context, covariates are the predic-
tor variables of which the correlation causes concern. Iden-
tification of covariates that are associated with structural
parameters, such as clearance, has been a primary objective
of many applications of population modeling. Procedures
for selecting covariates have been the subject of much
research in recent years.''”'* They have also generated
lively discussions among participants in email discussion
lists."*'> A recurring theme is that scientific insight should
be favored over automatic statistical search procedures but
that the latter are, nonetheless, useful tools for exploratory
analyses.

For the data discussed in the previous section, the follow-
ing assessment of covariates was stipulated in the protocol.
First, weight was examined as a covariate for clearance,
because previous studies of the drug in a different indica-
tion had suggested such a relationship. Because it was
prespecified, the hypothesis of a relationship between
clearance and weight was tested at « = 0.05. Next, other
covariates, including age, sex, race, creatinine clearance,
and several indication-specific covariates, were explored
graphically for relationships with patient-specific estimates
of clearance and volume derived from an initial model
without covariates. Those covariates where some relation-
ship was judged visually evident were then used as candi-
dates in a forward selection procedure with a = 0.01 as the
criterion to enter the model.

Weight was not significantly related to clearance. Age,
sex, and creatinine clearance showed visual evidence of
a relationship with clearance. No covariates appeared
related to volume. Each of age, sex, and creatinine clear-
ance was significant at « = 0.01 when tested individu-
ally as a covariate of clearance. First age and then sex
was selected for entry into the model based on values of
the maximized likelihoods. When age and sex were in
the model, creatinine clearance was no longer significant
at a = 0.01.

Nonetheless, it was ultimately argued that the final model
should be one with creatinine clearance as the single cova-
riate influencing drug clearance. The reason was that the
drug was known to be cleared via renal and hepatic
pathways. Creatinine clearance is highly correlated with
age and sex, algebraically so in this case, because the
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Evolution of concentrations with noncompliance

Concentration
0.020

0.010

0.000

0 20 40 60 80
Time (hours)

100 120

Figure 4. Evolution of concentrations with noncompliance.

Cockroft-Gault estimate of creatinine clearance was used,
which is a formula with components including age and
sex.'® The hepatic pathway was not believed to vary mark-
edly with age and sex.

Model building serves multiple objectives: to predict, to
explain, to explore, and to test. To satisfy the confluence of
objectives, methods have been adopted, such as stepwise
variable selection, that confuse the exploratory and con-
firmatory aspects of data analysis. These methods are
attractive, because they offer objectivity, automation, and
openness to the unexpected. But they can mislead, espe-
cially when the covariates are correlated with one another,
so it is important to understand their properties and to seek
alternative data analytic paradigms.'' Because models are
always tentative and in need of challenge, mixing prior
knowledge and assumptions into the model-building proc-
ess is both acceptable and necessary.

Reliability of the Data

The depiction in Figure 2 of how concentrations evolve
over time is an ideal that is rarely if ever met. It assumes
that the patient took a constant dose regularly at exact
12-hour intervals. In the real world, when patients self-
administer a drug, they skip doses sometimes, or they
may take doses at times that differ from the prescribed reg-
imen. Such deviations are components of noncompliance.
Figure 4 depicts what might be a more realistic picture.
Moreover, in a clinical trial, the times at which doses
are taken may be reported inaccurately.

When a modeler ignores these aspects of noncompliance
and faulty reporting, serious biases in the parameter esti-
mates can result.'”"® Remedies have been proposed, in-

cluding the use of electronic monitoring systems that record
when a patient’s medication package has been opened'’
and Bayesian methods of inference that take advantage
of some prior knowledge or a subset of fully compliant
data.?%%!

Electronic monitoring systems are still not widely used,
and relevant information for a Bayesian approach might
not be available. Here, for the data depicted in Figure 1,
we will consider directly modeling the various sources of
unreliability. We will use the methodology pioneered by
Sheiner et al,'~ in the current implementation of that meth-
odology as NONMEM.*

First, consider a relabeling of the time axis so that the dose
before the sample dose is assumed to be at time 0, and
assume that this dose is sufficiently long after the start
of dosing that the patient PKs should be at steady state
(see Figure 5).

Let Cg(t) denote the predicted response of the 1-compart-
ment model t hours after a dose at steady state, assuming
regular 12-hour dosing. At the newly translated time 0, a
perfectly compliant patient would have expected concen-
tration Cg(0), but a real patient will be modeled as having
expected concentration Cg(0)e™, where the exponentiated
random effect captures that patient pattern of noncompli-
ance. Letting g = Mgnrv + Mssiov, both interindividual
and interoccasion®” variation are modeled. Such a general-
ized notion of steady state has been described by Wang
et al.> On the new time axis, let the time of the sample be
tsample- Then the expected contribution from the dose at
time 0 is Cyg(tsampie)e™:.

To account for errors in the time variable, consider a
“structural relationship model,”** where reported dosing
time is taken as a second response variable together with
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Figure 5. Putting the time origin at the penultimate dose.
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the observed concentration. Let . denote the expected in-
terval between the penultimate and ultimate doses, and let
Mp = Mpnv T Mpiov represent the deviation from this
interval for a patient at an occasion. On the new time axis,
the time of the ultimate dose for a patient is
tie = w + mMp, and the time between that dose and the
sample 1S tposidose = Esample —tf" . The reported time is

dose*
. . reported __ _true
modeled as a response variable with t; . = tgo¢ + €p.

Let C(tyostdose) denote the predicted contribution of the
1-compartment model from a dose taken at tjis,. But such
a dose may not have been taken. Let X be an indicator for

whether the dose was taken. Model X as

__exp(6 +myx)
1 +exp(0 +mx)

Mx is modeled as an interoccasion random effect. If mx is
large negative, then X = 0; if large positive, then X = 1.
Intermediate values may be interpreted as irresolvable
uncertainty about whether the dose was taken. The actual
expected contribution from the dose that should have been
taken at toe, is, thus, XC(tyostdose)-

dose

Finally, the observed concentration is modeled as
Cobserved — Css(tsamp]e)e“ss + XC (tpostdose) + €c. This, toge-
ther with the usual terms for intersubject variability of k,,
Cl, and V, completes the specification of a model that can
be programmed in NONMEM. An example control file is
provided in the Appendix.

The model was fitted to the data in Figure 1. The SD of the
reporting error for the time response ep was fixed, as is
common in structural relationship models, to ensure identi-
fiability; different values were tried, eventually settling at
0.95 hours. The expected dosing interval p was estimated
as 11.6 hours. The interpatient component of mp was
judged significant, but not interoccasion variation; the for-
mer was estimated to have a SD of 0.83 hours. Thus,
according to the model, the average dosing interval was
around 12 hours (11.6 hours); each patient had his or her
own regular deviation from this average, which was typi-
cally around 1 hour (0.83 hours), and the typical deviation
of the reported dosing time from the actual was also around
1 hour (0.95 hours).

The interoccasion component of mgs was significant but
not the interpatient component. The implied coefficient of
variation of predicted steady-state concentrations was
18%.

The inferred distribution of occasion-specific estimates of
X was bimodal, with modes at 0 and 1. Figure 6 plots the
data with differentiation of points where X was estimated
as 0, indicating a missed dose, from 1, indicating a taken
dose. Such a diagnostic may lead to additional investiga-
tion (eg, checking case record forms for comments or

Data with inferred missed doses (solid) and taken doses (open)
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Figure 6. Data with inferred missed doses (solid) and taken
doses (open).

querying study sites) or alternative handling of data points
suspected of association with missed doses (eg, refitting
the model with those points excluded as a sensitivity
check).

The estimated clearance was similar to that found earlier
(2.72 vs 2.85 L/h). But the estimated k, was smaller
(0.30 vs 0.74 h™ '), as was the estimated volume (60.3 vs
87.6 L).

The model was sensitive to initial guesses for the parame-
ters, and convergence was not always achieved, according
to the NONMEM judgment. It would be difficult to exam-
ine the properties of such a finicky model by a simulation
study. Thus, in retrospect, this example is offered not as a
recommended, general approach but rather as a didactic
experiment to illustrate some sources of data errors and
some modeling components that demonstrate the versatil-
ity of NONMEM and that might be found useful in some
situations. For example, a similar approach for a design
where a single dose is followed by several plasma samples
has been explored more systematically by Soy et al.>> In
general, electronic monitoring systems to improve data
reliability should be used whenever possible, or other sour-
ces of information to allow more refined statistical method-
ologies, such as the previously cited Bayesian approaches,
should be sought.

Unknown Concomitant Variables

We consider an example that concerns the relationship
between PKs and clinical outcome, that is, PK/efficacy.
The drug treats a chronic condition. The treatment phase of

E378



The AAPS Journal 2005; 7 (2) Article 38 (http://www.aapsj.org).

Clinical outcome versus Cpin

o

1) @O O O
o

Response

100 120

0 20 40 60 80
Cmin

Figure 7. Clinical outcome versus Cyp,.

a clinical trial, where patients were randomized to 1 of 3
drug doses or placebo, spanned several months, during
which several steady-state trough concentrations were
observed. The average of a patient’s trough samples, a vari-
able called C,,;,, was the measure of drug exposure used to
predict a single, univariate summary of clinical outcome.
Thus, the longitudinal nature of the data was ignored, and
the PK/efficacy model was not essentially a population
model. But population-model thinking will be seen as help-
ful to explore the ramifications and possible diagnosis of
unknown concomitant variables. Figure 7 displays the data,
suggesting that a linear PK/efficacy relationship is reason-
able.

The potential problem here is that because patients were
randomized to a dose and not prespecified concentrations,
Chnin 1S an outcome variable, as is the clinical response.
Suppose that large values of some unobserved concomitant
variable are associated with lower clearance and with a
worse clinical outcome. Then patients who have higher
concentrations in the dose-controlled trial (because of
lower clearance) will tend to have higher values of this var-
iable and, hence, less favorable clinical responses. Had
patients been randomized to concentration in a concentra-
tion-controlled trial,*® then at the higher concentrations
there would be patients with more diverse values of the
unobserved concomitant variable, so there would be more

Table 2. PK/Efficacy via Ordinary and Two-Stage Regression

patients at those higher concentrations who have better
clinical outcomes. The PK/efficacy relationship inferred
from the dose-controlled trial would be biased toward zero
relative to that of the concentration-controlled trial. The
unobserved concomitant variable in the above scenario is
called a confounder, and the biased PK/efficacy inference
is called confounded.

Modeling the situation suggests some diagnostics to help
assess the possibility of confounding. Let D;, ¢;, and y; be
the randomized dose, observed C,,;,, and observed clinical
response for the i’th patient, respectively. Suppose a con-
founder exists. Denote its value for the i’th patient by m;,
and treat it as a random variable with mean zero. Assume
that C,;, is proportional to dose, and that the PK/efficacy
relationship is linear, as suggested by Figure 7. Further-
more, assume that the effect of the confounder is as repre-
sented in Equations 1 and 2:

log(ci) = o + log(Di) + aom; + &ci (1)

Yi = Bo + Bici + Bom; + &y (2)

Thus, m; affects the slope of the dose/concentration rela-
tionship, and it affects the level of the PK/efficacy relation-
ship. Because m; is unobserved, Equations 1 and 2 are over-
determined and can be reduced to:

log(ci) = ag + log(D;) + & (3)
i = Bo + Bici + Ly (4)
where:
L = com; + & (5)
Lyi = Bomy + &y (6)

If ay #0, B, # 0, and var(r;) # 0, then m; would contribute
to both models, and, hence, in Equation 4, c¢; would be cor-
related with {y;. That is, although Equation 4 appears to be
a standard, linear-regression model often used for empiri-
cal models of PK/pharmacodynamic (PD) relationships, it
would really not be such a standard model, because one of
the usual assumptions of linear regression, namely, inde-
pendence of the regressors and the error, would be vio-
lated. Because of the correlation between c¢; and {y;, the

Estimation Method ﬁo B1 Hausman P Value
Ordinary least squares 4.56 = 0.04 —0.010 £ 0.001
Two-stage regression 4.58 = 0.04 —0.011 = 0.001 0.47
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least-squares estimates of B, and B; would be biased.?’
This bias would be the manifestation of confounding be-
cause of the unobserved covariate );.

Because patients were randomized to dose, in Equations 3
and 4, D; is independent of {;. Also, y; depends on D; only
through c;. These conditions imply that D; is an instrumen-
tal variable?® for Equation 4. Instrumental variables can be
used to derive estimates of B, and 3; that are consistent,
that is, that can be made arbitrarily close to 3¢ and B;
with probability that approaches 1 as the sample size
increases.?® In a procedure called 2-stage regression,” one
first regresses c; on D; and then regresses y; on the pre-
dicted value of ¢;. SAS PROC MODEL?° implements the
procedure. It also provides a test, called Hausman’s test,?’
for the presence of bias, based on the quantitative differen-
ces between the estimates from ordinary regression and
2-stage regression. Table 2 shows the results of applying
and comparing the 2 regression approaches. These results
suggest that the original PK/efficacy inference is uncon-
founded, because the 2 sets of estimates are similar, and
Hausman’s test is not significant.

In PK/PD analysis, the relationship between concentration
and response is often assumed to be causal. The meaning
of causality is not so easy to pin down,>' and the estimation
of causal relationships with observational data requires
care.>>3? Instrumental variables have been proposed as one
tool for causal inference in the presence of confounding.?®
SAS PROC MODEL?® implements instrumental-variable
methods for nonlinear models, also, so that more general
PK/PD models might be considered. But researchers still
debate the proper approach to instrumental-variable analy-
sis.** More consideration of these issues among population
modelers is needed.

CONCLUSION

The passage about the 4 “disadvantages” quoted in the
Introduction did not end with the simple enumeration of
concerns. The authors' concluded the paragraph on a posi-
tive note:

“The analysis of routine clinical data unquestionably
requires greater sophistication in statistics than the analysis
of experimental data. We contend, however, that a reason-
able effort to develop sophisticated data analysis methods
is amply repaid: the problems of data reliability, statistical
inefficiency, and methodology can be managed.”

Notice, however, that the affirmation does not cover the con-
cern about confounding. The next paragraph continued:'
“What remains is the ever-present danger of bias due to
incompletely controlled concomitants.” How to deal with
confounding in observational data remained one of Lewis
Sheiner’s interests. Indeed, he was a consultant for Novar-

tis on the project discussed in the previous section and his
insights inspired those results. It is a privilege to dedicate
this article to his memory.
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APPENDIX: NONMEM CODE

$PROB DATA BRELIABILITY MODEL
$INPUT DV ID TDOS DOSE OCC TSAM CMT
$DATA DATA.CSV IGNORE = #

$PRED

TAU = 12.

TVKA = THETA(1)

KA = TVKA

TVCL = THETA(2)

CL = TVCL*EXP(ETA(1))

TVV = THETA(3)

V = TVV*EXP(ETA(2))

KE = CL/V

:DEFINE INDICATORS FOR OCCASION
X1=0

X2 =0

X3 =0

IF (OCC.EQ.1) THEN

X1 =1

ENDIF

IF (OCC.EQ.2) THEN

X2 =1

ENDIF

IF (OCC.EQ.3) THEN

X3 =1

ENDIF

:TRUE TIME OF DOSING AND TIME POST DOSE.
:SUBJECT EFFECT PLUS OCCASION EFFECTS.

TDTR = THETA(4) + ETA(3) + X1*ETA(4) +
X2*ETA(5) + X3*ETA(6)
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TPD = TSAM - TDTR
IF (TPD.LT.0) THEN
TPD = 0.

ENDIF

;CONTRIBUTION FROM HISTORY TO
STEADY-STATE DOSE.

;SUBJECT EFFECT PLUS OCCASION EFFECTS.

SSKA = EXP(-KA*TSAM)
SSKE = EXP(-KE*TSAM)
DENA = 1. - EXP(-KA*TAU)
DENE = 1. - EXP(-KE*TAU)

DUM = DOSE*KA/V/(KA-KE)*(SSKE/DENE -
SSKA/DENA)

SSETA = ETA(7) + X1*ETA(8) + X2*ETA(9) +
X3*ETA(10)

SSCNT = DUM*EXP(SSETA)
:CONTRIBUTION FROM RECORDED DOSE
OBSKA = EXP(-KA*TPD)

OBSKE = EXP(-KE*TPD)

DUM2 = X1*ETA(11) + X2*ETA(12) +
X3*ETA(13)

ARG = 15%(DUM2 + THETA(5))
COMP = EXP(ARG)/(1 + EXP(ARG))

OBSCNT = COMP*DOSE*KA/V/(KA-KE)*
(OBSKE - OBSKA)

:PREDICTED VALUES
F1 = TDTR

F2 = SSCNT + OBSCNT

IF (CMT.EQ.1) THEN

Y = F1 + ERR(])

ENDIF

IF (CMT.EQ.2) THEN

Y = F2 + ERR(2)

ENDIF

STHETA

(0,0.3, 0.4); THETA1, KA
(2.5,2.85,3.); THETA2, CL

(50, 60, 80); THETA3, V

(11, 11.5, 13); THETA4, DOSE TIME

(0.4, 0.5, 0.6); THETAS, OFFSET FOR DOSE
ADJUSTMENT

$OMEGA 0.075; OMEGA1, CLEARANCE
$OMEGA 0.1; OMEGA2, VOLUME

$OMEGA 0.7; OMEGA3, SUBJECT-SPECIFIC DOSE
TIME EFFECT

$OMEGA BLOCK(1) 0 FIXED; OMEGAA4,
OCCASION-SPECIFIC DOSE TIME EFFECT

$OMEGA BLOCK(1) SAME; OMEGAS5
$OMEGA BLOCK(1) SAME; OMEGA6

$OMEGA 0 FIXED; OMEGA7, SUBJECT-SPECIFIC
STEADY-STATE EFFECT

$OMEGA BLOCK(1) 0.03; OMEGAS,
OCCASION-SPECIFIC STEADY-STATE EFFECT

$OMEGA BLOCK(1) SAME; OMEGA9
$OMEGA BLOCK(1) SAME; OMEGAL10

$OMEGA BLOCK(1) 1. FIXED; OMEGAL1,
OCCASION-SPECIFIC COMPLIANCE EFFECT

$OMEGA BLOCK(1) SAME; OMEGA12
$OMEGA BLOCK(1) SAME; OMEGA13

$SIGMA 0.9 FIXED; SIGMASQ1, DOSE-TIME
RESIDUAL VARIANCE

$SIGMA 49; SIGMASQ2, CONCENTRATION
RESIDUAL VARIANCE

$EST METHOD = CONDITIONAL MAXEVAL = 9000
PRINT = 5 NOABORT
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